

Split Reflective Multi-Turn Absolute Encoder GROA35-M16S20Bit-SY-C-5V SPECIFICATION

ZHEJIANG REAGLE SENSING TECHNOLOGY INCORPORATED

Contents

1.	Summary Info	2
2.	Technical Specifications	3
3.	Electrical Parameters	4
4.	Cable Definition	4
5.	Mechanical Specifications	5
6.	Communication Specifications	7
	6.1 Installation Accessories	7
	6.2 Installation Sequence	8

1. Summary Info

This manual primarily describes how to use the split optical absolute series GROA35 Multi -turn encoder from Reagle Sensing. This product is mainly used in servo-driven control systems, providing the feedback information required for accurate position and speed control units.

The performance of the encoder has a decisive impact on the essential characteristics of the motor, such as:

- Positioning accuracy
- Speed stability
- Bandwidth, determining the response speed to drive command signals and resistance to interference
- Motor size
- Noise

RS485 Communication Encoder

page 2

2. Technical Specifications

Model	GROA35-M16S20Bit-SY-C-5V		
Resolution	1048576 (20bit) ,22-bit and 24-bit selectable		
Auxiliary Functions	Fault Warning * Electromagnetic Environment Warning		
Communication Interface	RS485		
Communication frequency	≤16kHz		
Baud rate	2.5Mbps		
Input shaft allowable deviation	Axial:-Axial play:<±0.15mmRadial:-Radial play:<€0.01mm		
Main shaft speed	≪6000rpm		
shaft diameter	straight shaft Ø6		
Rotor angular acceleration	≤80000rad/s ²		
Vibration	Between 10 and 55Hz, maintain amplitude of 1.5mm. Between 55 and 2000Hz, acceleration is 98m/s ² . 2 hours per axis for XYZ, totaling 6 hours.		
Mechanical shock	Shock acceleration of 980m/s², 11 milliseconds. 3 impacts per direction, totaling 18 impacts.		
Operating Temperature	-20°C~ 95°C		
Relative Humidity	\leq 90% (40°C/21 days, based on EN 60068-2-78); No condensation		
Enclosure Protection Rating	— (Motor Rear Case Protection)		

3. Electrical Parameters

		T=25°C				
LI LI	tems	Min.	Тур.	Max.		
Main power supply	voltage	4.75 V	5V	5.25V		
Main power supply	Current (Typ)		110mA	- 1		
Battery voltage			3.6V DC	150		
Battery fault voltage	e		3.0V			
Mode transition	Main power supply switches to low-power mode		4.2V	E FERRE		
voltage	Low-power mode transition to main power supply mode	- />	4.3V			
Differential Level	High	3.5V				
Differential Level	Low		, m	1.7V		
Edge Change Time		Carlos and a second		100ns		
Insulation resistance	e	50ΜΩ				

4. Cable Definition

Cable color	Definition	
Red	5V	
Black	GND	
Blue	485+	
Yellow	485-	
Brown	Battery +	
White	Battery GND	
Shielding mesh	PE	

KREAGLE

5. Mechanical Specifications

♦ Product Structure Dimension Diagram

page 5

♦ Recommended Installation Dimensions

1. Straight Shaft Installation

 * When the axial dimension tolerance is not met, shims should be used for adjustment. The motor shaft axial play must be within ±0.15.

2. Stepped Shaft Installation

 * When the axial dimension tolerance is not met, shims should be used for adjustment. The motor shaft axial movement must be within ±0.15

6. Communication Specifications

6.1 Installation Accessories

- Flat Head Screwdriver
- Cross Head Torque Screwdriver
- Metric 1.5mm Hexagon Torque Wrench

6.2 Installation Sequence

6.2.1 Base Plate Removal and Installation

1) Clean the encoder body mounting surface of the motor using alcohol or similar substances.

2) Separate the encoder base plate 1 from the encoder body, using the side tool holes if possible.

3) Mount the base plate onto the motor from above, ensuring that the five mounting holes on the motor end align with those on the base plate.

4) Insert the alignment tool into the motor shaft outer diameter and the base plate inner diameter, ensuring that the encoder base plate mounting surface is fully supported without any gaps.

5) Apply thread lock adhesive to the threaded bottoms of the two M2×4 cross-recessed pan head screws② and tighten them to 0.3 Nm (recommended) torque (at two locations). Remove the alignment tool.

page 8

6.2.2 Code wheel assembly and main body installation

- 1) Clean the motor shaft with alcohol or similar substances
- 2) Insert the code wheel assembly 3 into the motor shaft
- 3) Lock the motor shaft. While the motor shaft is fixed, apply thread locker to the front

end of the M3×6 stainless steel cross-recessed countersunk screw (5), and tighten it with a torque of 0.6Nm (recommended).

4) From the top of the circuit board main body (4), align the positioning recess with the base plate (1), ensuring that the two positioning pins on the main body fit into the positioning holes on the base plate.

5) Apply thread locker to the threaded ends of the 3 M2×10 hexagonal cylindrical head screws (6). Install them with the small washers (7) onto the motor and tighten with a torque of 0.3Nm (recommended) at 3 locations.

6.2.3 Test

After the encoder is installed, the motor is mounted to the workstation, and the encoder cable is connected to the workstation. If the test passes, it indicates that the encoder installation is completely correct and the installation process is finished.

* The encoder must undergo testing at the workstation to confirm its stability and reliability, ensuring secure installation.

[Precautions]

1. This encoder has a split structure. The encoder shaft (within the code disk component) is separate from the main body of the encoder. When installing the encoder shaft onto the motor shaft, it needs to be exposed to the air. Please assemble it in a clean and dust-free environment.

- 2. Before installation, clean the motor shaft to remove oil and contaminants to prevent affecting the tightness of the encoder shaft and contaminating the code disk.
- 3. Avoid touching the code disk directly with your hands (use specialized tools to handle it). Fingerprints, oil, dust, and other contaminants can cause signal abnormalities.
- 4. After installation, check the cleanliness of the reflective code disk surface. If there is contamination, gently wipe it with a lint-free cloth dampened with alcohol. Be careful not to use excessive force or abrasive materials, as these may damage the code disk.

Revision History

Date	Version Number	Modification Details or Changes		
		Location	Content	
20220906	V0.1	/	New Version	
20220906	V0.2	1	Add structural dimensions and installation instructions	

COMMITTED TO SENSING TECHNOLOGY

PROMOTE INDUSTRIAL CIVILIZATION

O Fourth Floor, Block B, Building 9, Intelligence Industry