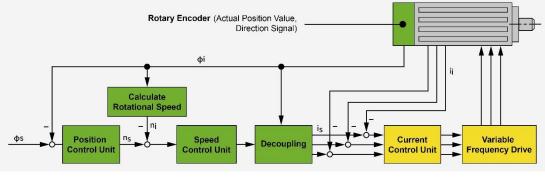


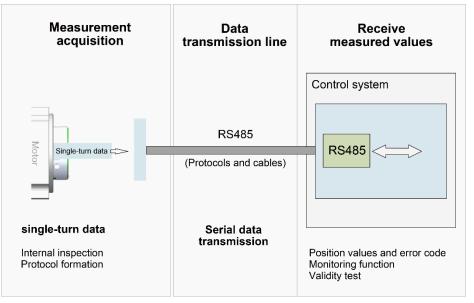
Split-type single-turn absolute rotary encoder SROA35-23Bit-SY-C-5V SROA46-23Bit-SY-C-5V SPECIFICATION

ZHEJIANG REAGLE SENSING TECHNOLOGY INCORPORATED


Contents

1.	Summary Info	2
2.	Technical Specifications	3
3.	Electrical Parameters	4
4.	Cable Definition	4
5.	Mechanical Specifications	5
	5.1 SROA35 series	5
	5.2 SROA46 series	5
6.	Mounting Procedure	6
	6.1 SROA35 series	6
	6.2 SROA46 series	8
7.	Communication Specifications1	0
	7.1 Overview1	0
	7.2 E ² PROM Communication Specifications1	0
	7.3 Frame Format1	0
	7.4 Detailed Description1	1
8.	Timing Description1	4
	8.1 Timing Diagram1	4
	8.2 Detailed Specifications1	4
9.	Configuration Description1	5

1. Summary Info


This manual primarily describes how to use the split-type Single-turn absolute rotary series SROA35 and SROA46 encoder from Reagle Sensing. This product is mainly used in servo-driven control systems, providing the feedback information required for accurate position and speed control units.

Position and velocity control system

The performance of the encoder has a decisive impact on the essential characteristics of the motor, such as:

- Positioning accuracy
- Speed stability
- Bandwidth, determining the response speed to drive command signals and resistance to interference
- Motor size
- Noise

RS485 Communication Encoder

2. Technical Specifications

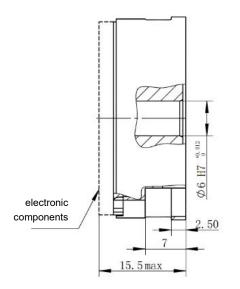
Model	SROA35-23Bit-SY-C-5V SROA46-23Bit-SY-C-5V			
Resolution	Supports up to 8388608 (23bit), 17bit Compatible			
Absolute Positioning Accuracy	 (Dependent on the rotational accuracy of the motor shaft) 			
Repeatable positioning accuracy	<±5"			
Auxiliary Functions	Fault Warning * Electromagnetic Environment Warning			
Communication Interface	RS485			
Communication frequency	≤16kHz			
Baud rate	2.5Mbps			
Input shaft allowable deviation	Axial: $$ Axial play: <0.1mmRadial: $\pm 0.1mm$ Radial play: <0.01mm			
Main shaft speed	≪6000rpm			
Moment of inertia	straight shaft Ø6mm			
moment of inertia	0.21kg·mm ²			
Starting Torque (20°C)	≤0.005N · m			
Weight	\approx 0.021kg (excluding cables)			
Rotor angular acceleration	≤80000rad/s ²			
Vibration	 Between 10 and 55Hz, maintain amplitude of 1.5mm. Between 55 and 2000Hz, acceleration is 98m/s². 2 hours per axis for XYZ, totaling 6 hours. 			
Mechanical shock	Shock acceleration of 980m/s², 11 milliseconds. 3 impacts per direction, totaling 18 impacts.			
Operating Temperature	-20°C~105°C			
Relative Humidity	\leq 90% (40°C/21 days, based on EN 60068-2-78); No condensation			
Enclosure Protection Rating	- (Motor Rear Case Protection)			

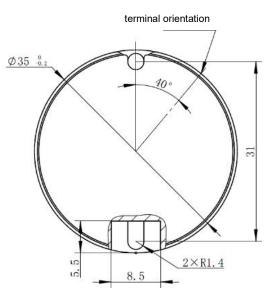
3. Electrical Parameters

li e e		T=25°C				
ltem	IS	Min.	Тур.	Max.		
Main power supply ve	oltage	4.75 V	5V	5.25V		
Main power supply C	urrent (Typ)		90mA			
Differential Level	High	3.5V				
Differential Level	Low			1.7V		
Edge Change Time				100ns		
Insulation resistance		50ΜΩ				

4. Cable Definition

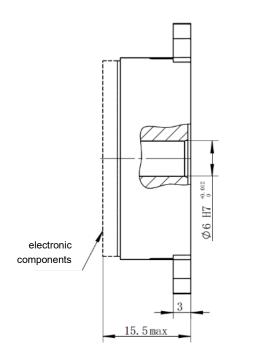
Cable color	Definition
Red	5V
Black	GND
Blue	485+
Yellow	485-
Brown	NC (Not connected)
White	NC (Not connected)
Shielding mesh	PE

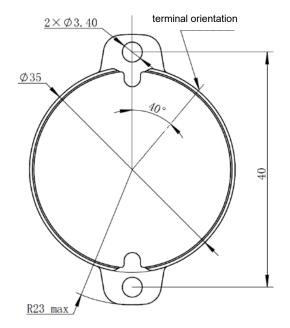

Dedicated to sensing technology Advancing industrial civilization



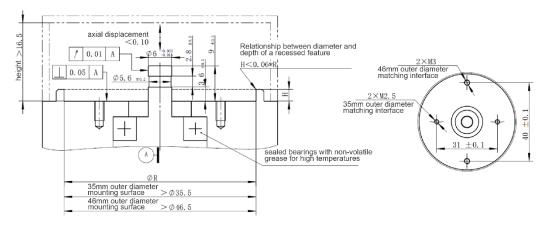
5. Mechanical Specifications

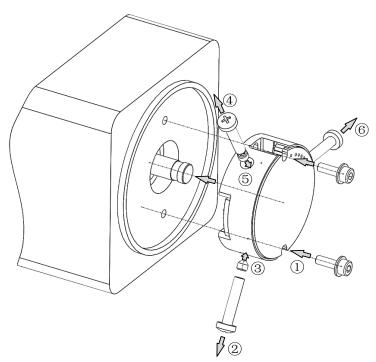
5.1 SROA35 series


♦ Product Structure Dimension Diagram



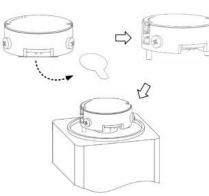
5.2 SROA46 series

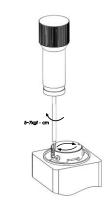

♦ Product Structure Dimension Diagram


♦ Recommended Motor End Design Dimensions

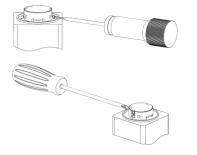
6. Mounting Procedure

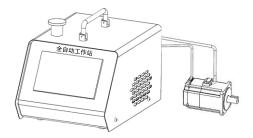
6.1 SROA35 series


6.1.1 Installation Diagram



- 6.1.2 Installation Accessories
- 1.5mm metric hex key torque wrench
- 2.0mm metric hex key torque wrench
- · Phillips screwdriver




6.1.3 Installation Sequence

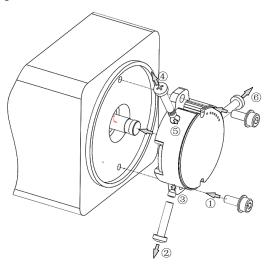
 Remove the dust cover from the bottom of the encoder.

Insert M2.5 combination screws into the slots on both sides of the encoder; then insert the encoder shaft into the motor shaft until the lower end of the screw touches the rear end cover, ensuring that the M2.5 screws align with the threaded holes of the motor rear cover during the insertion process.

② Use the corresponding hexagon torque

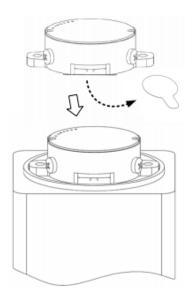
wrench to lightly tighten the single-sided M2.5 combination screws. After rotating 3 turns, switch to the other side and alternate, rotating 3 turns each time until the bottom surface of the encoder is fully aligned with the rear cover. Finally, use a torque of 5 to 7 kgf-cm to securely tighten the screws on both sides.

- ③ Use a cross screwdriver to remove one screw from the side wall, then insert the M33 hexagon socket set screw and prelock it. Next, remove the other screw from the side wall, insert another M33 hexagon socket set screw, and tighten it using 7 kgf·cm. After that, tighten the previous set screw to 7 kgf·cm as well. Finally, remove the remaining screw from the side wall to complete the encoder installation.
- ④ After the motor rear cover assembly is complete, connect the motor cables and encoder cables to the workstation. If the test is successful, it indicates that the encoder installation is entirely correct and the installation process is complete.


[Note] : The encoder must be tested and confirmed by the workstation to ensure that the installation is stable and reliable.

Dedicated to sensing technology Advancing industrial civilization

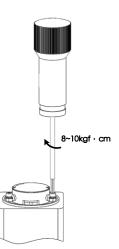
6.2 SROA46 series


6.2.1 Installation Diagram

6.2.2 Installation Accessories

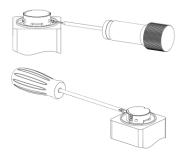
- 1.5mm metric hex key torque wrench
- 2.0mm metric hex key torque wrench
- Phillips screwdriver

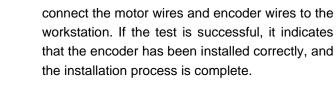
6.2.3 Installation Sequence



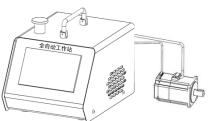
① Remove the dust-proof sticker from the bottom of the encoder.

Insert the encoder shaft into the motor shaft until the encoder base is flush with the rear end cover of the motor. During normal fitting, the insertion process should not require force; if resistance is felt, check the motor dimensions for any deformation or foreign objects. Avoid pressing down or striking the encoder during installation.


Dedicated to sensing technology Advancing industrial civilization


2 Use the corresponding hexagon torque wrench to

lightly tighten the single-sided M3 combination screw, then lightly tighten the M3 combination screw on the other side. After that, sequentially use a torque of 8 to 10 kgf·cm to securely tighten the screws on both sides.



- ② Use a cross screwdriver to remove a screw from the side wall, insert the M33 hexagon socket set screw, and pre-lock it. Then, remove the other screw, insert the second M33 hexagon socket set screw, and tighten it to 7 kgf·cm. Next, tighten the first set screw to 7 kgf·cm as well. Finally, remove the remaining screw from the side wall to complete the installation.
- ④ After the motor rear cover assembly is complete,

[Note] : The encoder must be tested and confirmed by the workstation to ensure that the installation is stable and reliable.

7. Communication Specifications

7.1 Overview

Items	Description	Remarks
Communication Code System	Binary	-
Communication Circuit	Differential Drive	RS485
Data Transmission Content	Single-Turn Position Information	17 bit(maximum support 23bit)
Communication Rate	2.5 Mbps	

7.2 E²PROM Communication Specifications

Items	Address	Description	Remarks
Readable and Writable User Parameter Address Range	0~0x7E* page8	User Parameter Domain	This address domain can be used to store user parameters. The partial area on page 8 is reserved and not recommended for customer use.
Page Address	0x7F	0~7	Within this range
Maximum Number of Erase Cycles	100000 times		Executable Operation Count

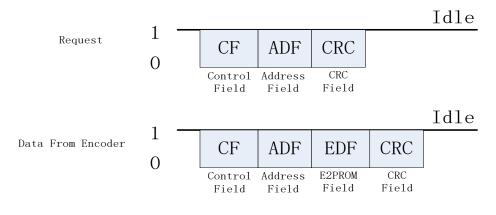
7.3 Frame Format

Each data frame is divided into several data words. Each data word is transmitted and received with 1 start bit, 8 data bits, and 1 stop bit, with the least significant bit first and the most significant bit last.

In the data frame transmission, the following terms are used:

Items	Description	Remarks
CF	Control Field	Identifies different command types.
SF	Status Field	Provides information on the encoder's status
DF	Data Field	Encoder Position Data
ADF	Address Field	Accessible Encoder Address
EDF	E ² PROM Field	The content at the specified address
CRC	Cyclic Redundancy Check	Polynomial: x8+1 (XOR all data except CRC)

7.3.1 Position Data Reading



7.3.2 Write E²PROM Idle 1 Request CF ADF EDF CRC 0 E2PROM Control Address CRC Field Field Field Field Idle 1 Data From Encoder CF ADF **EDF** CRC 0 E2PROM CRC Control Address Field Field Field Field

*The request frame and response frame have the same content

7.3.3 Read E²PROM

*The request frame and response frame have the same content

7.4 Detailed Description

7.4.1 Control Field (CF)

CF consists of one data word, with categories and contents as shown in the table below:

Items	CF type	Remarks
	ID0(0x02)	Absolute Position Reading (CF+SF+ABS+CRC)
Read data	ID2(0x92)	Encoder ID Information Read (CF+SF+ID+CRC)
	ID3(0x1A)	Read All Data(CF+SF+ABS+ID+ABM+ALMC+CRC)
Write E ² PROM	ID6(0x32)	8-bit 'user data' can be written to the specified address. After the instruction format is sent, the encoder will return data within 20 μ s. During this process, please avoid communicating with the encoder.
Read E ² PROM	IDD(0xEA)	8-bit 'user data' can be read from the specified address. After the instruction format is sent, the encoder will return data within 20 μ s. During this period, please do not communicate with the encoder.
	ID7(0xBA)	The reset command requires sending 10 consecutive instructions with a time interval of no less than 62.5 μ s between each, to reset all fault status flags.
Reset	ID8(0xC2)	The reset command requires sending 10 consecutive instructions with a time interval of no less than 62.5 μ s between each, to reset and zero the current single-turn position. The position data will remain at the reset value even after power is cycled.

7.4.2 Status Field (SF)

SF is composed of one byte, with each bit defined as shown in the table below:

Bit number	Description	Remarks
Bit0	Rsvd	"0"
Bit1	Rsvd	"0"
Bit2	Rsvd	"0"
Bit3	Rsvd	"0"
Bit4	Counting Error	Same as ALMC.Bit2
Bit5	Rsvd	"0"
Bit6	Rsvd	"0"
Bit7	Rsvd	"0"

7.4.3 Data Field (DF0~DF7)

Depending on the CF type, the DF contains a different number of bytes, as detailed in the table below:

CF 类型	DF0	DF1	DF2	DF3	DF4	DF5	DF6	DF7
ID0 (0x02)	ABS0	ABS1	ABS2					
ID2 (0x92)	ENID							
ID3 (0x1A)	ABS0	ABS1	ABS2	ENID	ABM0	ABM1	ABM2	ALMC
ID7 (0xBA)	ABS0	ABS1	ABS2					
ID8 (0xC2)	ABS0	ABS1	ABS2					

[Note]:

- 1. ABS0~ABS2 represent the low, middle, and high bits of the encoder's single-turn position, where the high 7 bits of ABS2 are zero, and the remaining data forms a 17-bit position information.
- 2. ABM is always "0".
- 3. ENID is the encoder ID information, with a default value of 0x11.
- 4. ALMC is the encoder fault status flag, detailed in Section 7.4.4.

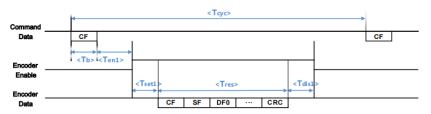
7.4.4 Error Description

ALMC faults are detailed in the table below:

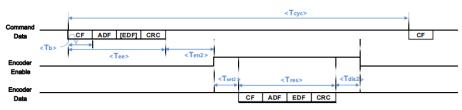
Bit	0	1	2	3	4	5	6	7
Name	Over- speed	"0"	Counting Error	"0"	"0"	"0"	"0"	"0"

Descriptions of fault flag bits are as follows:

Name	Function	Action
Over-speed	For 5V power mode, when speed exceeds 7200 RPM	Reset Power
Counting Error	Single-turn information calculation fault	Reset Power



8. Timing Description


8.1 Timing Diagram

Reagle Power-on Timing Chart

Reagle CF Communication Timing Chart

Reagle EEPROM Communication Timing Chart

8.2 Detailed Specifications

Characteristic	Symbol	Minimum	Default	Maximum	Unit	Note
Power-On time	Tpon		450	550	ms	
Command cycle period	Тсус	62.5			μs	
Data byte time	Tb		4		μs	
Encoder enable delay	Ten1	1.5		3.5	μs	
time	Ten2		4.5		μs	
Encoder EEPROM Command time	Tee		12		μs	Read: 3bytes data
			16		μs	Write: 4 bytes data
Encoder response time	Tres		4*N		μs	N bytes data
Encoder data set-up	Tset1	0.8		2	μs	
delay time	Tset2	1		1.5	μs	
Encoder disable delay	Tdis1	0.6		1.2	μs	
time	Tdis2		1.3		μs	

SROA Timing Characteristics

9. Configuration Description

Order codes can be found in the 'REAGLE SENSING Absolute Value Encoder Ordering Instructions'.

Specifications for terminal cables are detailed in the 'REAGLE SENSING Absolute Value Encoder Terminal Cable Drawing'.

Optional Configurations	Description	
Resolution	17Bit/23Bit	
Wiring Methods	Terminal Wiring	

Revision History

Date	Version	Modification Details or Changes				
Numb		Location	Content			
20210831	V1.0	/	New Version			
20220302	V2.0	Communication Protocol	Detailed Communication Protocol Description			
		Timing	Detailed Communication Protocol Description			
20220505	V2.1	Installation Methods	Dust plug changed to dust sticker			

COMMITTED TO SENSING TECHNOLOGY

PROMOTE INDUSTRIAL CIVILIZATION

O Fourth Floor, Block B, Building 9, Intelligence Industry