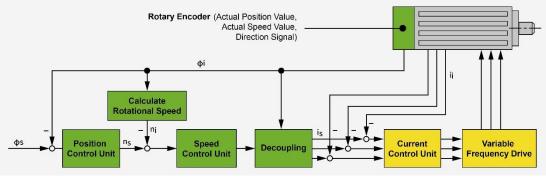


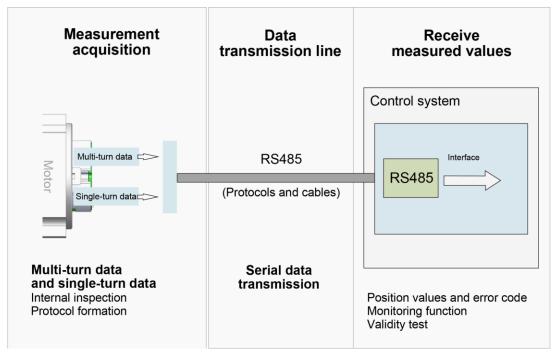
Split-type Multi-Turn Absolute Rotary Encoder SROA35- M16S23Bit-SY-C-5V SROA46- M16S23Bit-SY-C-5V SPECIFICATION

ZHEJIANG REAGLE SENSING TECHNOLOGY INCORPORATED


Contents

1.	Summary Info2
2.	Technical Specifications
3.	Electrical Parameters4
4.	Cable Definition4
5.	Mechanical Specifications5
	5.1 SROA35 Series
6.	Mounting Procedure
	6.1 SROA35 Series
7.	Communication Specifications10
	7.1 Overview.107.2 E²PROM Communication Specifications107.3 Frame Format.107.4 Detailed Description11
8.	Timing Description14
	8.1 Timing Diagram148.2 Detailed Specifications14
9.	Configuration Instructions15

1. Summary Info


This manual primarily describes how to use the split-type SROA35E/SROA46E series multi-turn encoders from Reagle Sensing. This product is mainly used in servo-driven control systems, providing the accurate positional and speed feedback required by the control units.

Position and velocity control system

The performance of the encoder has a decisive impact on the essential characteristics of the motor, such as:

- Positioning accuracy
- Speed stability
- Bandwidth, determining the response speed to drive command signals and resistance to interference
- Motor size
- Noise

Equipped with RS485 communication encoder

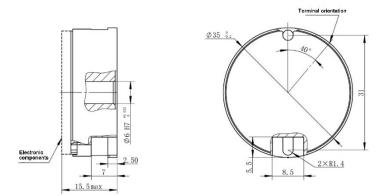
2. Technical Specifications

Model	SROA35-M16S23Bit-SY-C-5V SROA46-M16S23Bit-SY-C-5V		
Resolution	Supports up to 8388608 (23bit), compatible with 17bit.		
Turns	65536 (16bit)		
Absolute positioning accuracy	 (Depends on motor shaft rotation accuracy) 		
Repeat positioning accuracy	$<\pm5$ Arc seconds		
Auxiliary functions	Fault Warning * Battery Voltage Warning		
Communication interface	RS485		
Communication frequency	≤16kHz		
Baud rate	2.5Mbps		
Input shaft allowable deviation	Axial:Axial play: <0.1mmRadial: ± 0.1 mmRadial play<0.01mm		
Main shaft speed	≪6000rpm		
Shaft diameter	Straight Shaft Ø6mm		
Moment of inertia	0.21kg·mm ²		
Starting torque (20°C)	≤0.005N · m		
Weight	\approx 0.03kg (excluding cables)		
Rotor angular acceleration	\leq 80000rad/s ² when powered by a power source;		
Vibration	Between 10 and 55Hz, maintain amplitude of 1.5mm. Between 55 and 2000Hz, acceleration is 98m/s². 2 hours per axis for XYZ, totaling 6 hours.		
Mechanical shock	Shock acceleration of 980m/s², 11 milliseconds. 3 impacts per direction, totaling 18 impacts.		
Operating Temperature	-10°C~105°C		
Relative Humidity	\leq 90% (40°C/21 days, based on EN 60068-2-78); No condensation		
Enclosure Protection Rating	— (Motor Rear Cover Protection)		

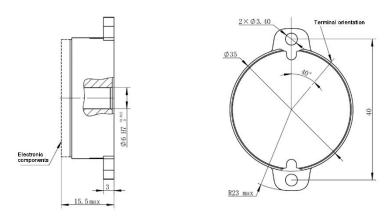
3. Electrical Parameters

	ltems	T=25°C			
	Items	Min.	Тур.	Max.	
Main power sup	oply voltage	4.75 V	5V	5.25V	
Main power sup	oply current (Typ)		90mA		
Battery voltage			3.6V DC		
Battery fault vol	tage		2.9V		
Battery warning	ı voltage		3.1V		
Mode switching	Main power supply to low power mode		4.2V		
voltage	low power mode to main power supply		4.3V		
Differential	High	3.5V			
Level	Low			1.7V	
Edge change ti	me			100ns	
Insulation resist	lance	50ΜΩ			

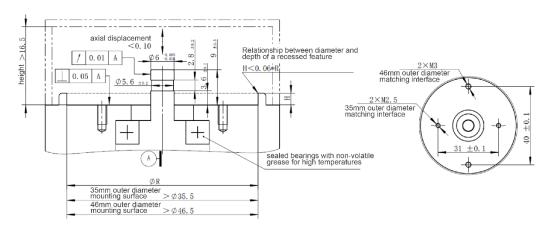
4. Cable Definition


Cable color	Definition
red	5V
black	GND
blue	485+
yellow	485-
brown	Battery +
white	Battery GND
shielding mesh	PE

5. Mechanical Specifications


5.1 SROA35 Series

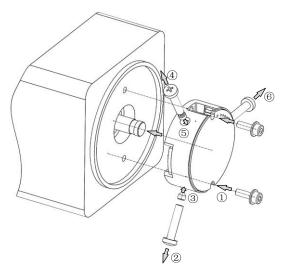
♦ Product Structural Dimensions Diagram



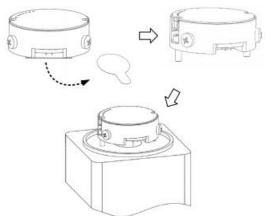
5.2 SROA46 Series

♦ Product Structural Dimensions Diagram

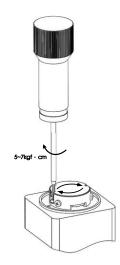
♦ Recommended Motor End Design Dimensions



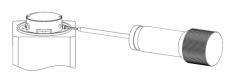
6. Mounting Procedure

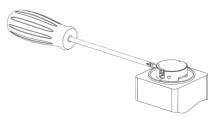

6.1 SROA35 Series

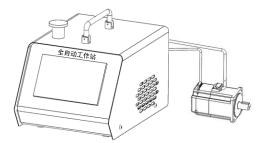
6.1.1 Installation Diagram


- 6.1.2 Installation Accessories
- Metric opposite side 1.5mm hexagonal torque wrench
- Metric opposite side 2.0mm hexagonal torque wrench
- Cross screwdriver

6.1.3 Installation Sequence




 Remove the dust cover from the bottom of the encoder; Insert the M2.5 combination screws into the slots on both sides of the encoder; Pass the encoder shaft through the motor shaft until the screw ends contact the rear cover, ensuring that the M2.5 screws align with the threaded holes in the motor's rear cover during the process.



② Use the corresponding hex key torque

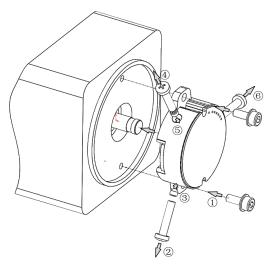
wrench to lightly tighten the M2.5 combination screws on one side, advance 3 threads, then switch to the other side, alternating to advance 3 threads each time, until the encoder base is fully flush with the rear cover; finally, use a torque of 5~7 kgf·cm to securely tighten the screws on both sides.

③ Remove one screw from the side wall

with a Phillips screwdriver, insert an M33 hex socket set screw and preliminarily lock it, then remove another screw from the side wall, insert an M33 hex socket set screw, tighten it with a torque of 7 kgf·cm, and then tighten the previously installed set screw with the same torque; finally, remove the remaining screw from the side wall to complete the installation of the encoder.

④ After the motor rear cover is assembled,

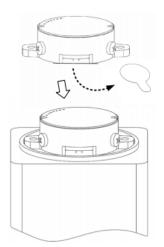
connect the motor wires and encoder wires to the workstation. If the test is passed, it indicates that the encoder has been installed correctly, and the installation process is complete.


[Note]: the encoder must be tested and confirmed by the workstation to ensure stable and reliable installation.

Dedicated to sensing technology Advancing industrial civilization

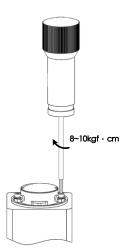
6.2 SROA46 Series

6.2.1 Installation Diagram



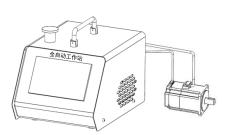
(1)

6.2.2 Installation Accessories


- Metric opposite side 1.5mm hexagonal torque wrench
- Metric opposite side 2.0mm hexagonal torque wrench
- Cross screwdriver

6.2.3 Installation Sequence

Remove the dust cover from the bottom of the encoder; Pass the encoder shaft through the motor shaft until the bottom of the encoder is flush with the rear cover of the motor. During normal assembly, there should be no need to apply force when inserting the encoder. If force is required, check the motor dimensions and for any crush damage or foreign objects. Do not press the encoder down forcefully during the installation process, and avoid striking it. Dedicated to sensing technology Advancing industrial civilization



- ② Use the corresponding hexagonal torque wrench to lightly tighten the M3 combination screws on one side, and then lightly tighten the M3 combination screws on the other side. Then, successively tighten the screws on both sides using a torque of 8~10 kgf·cm.
- ③ Remove one screw from the side wall using a

Phillips screwdriver, insert an M33 hex socket set screw and preliminarily tighten it, then remove another screw from the side wall, insert an M33 hex socket set screw, and tighten it with a torque of 7 kgf·cm, and then tighten the previously installed set screw with the same torque of 7 kgf·cm; finally, remove the remaining screw from the side wall to complete the installation.

- ④ After the motor rear cover is assembled, connect the motor wires and encoder wires to the workstation. If the test is passed, it indicates that the encoder has been installed correctly, and the installation process is complete.
- [Note]: the encoder must be tested and confirmed by the workstation to ensure stable and reliable installation.

7. Communication Specifications

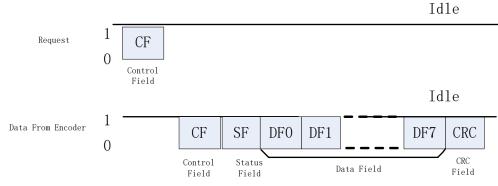
7.1 Overview

Items	Description	Remarks
Communication Code System	Binary	
Communication Circuit	Differential Drive	RS485
Data Transmission Content	Single-Turn Position Information	17 bits (up to 23 bits supported)
Data Transmission Content	Multi-Turn Position Information	16 bit
Communication Rate	2.5 Mbps	

7.2 E²PROM Communication Specifications

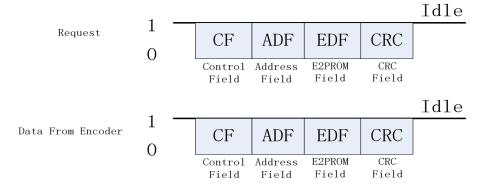
Items	Address	Description	Remarks
Readable and Writable User Parameter Address Range	0~0x7E* page8	User Parameter Domain	This address domain can be used to store user parameters. The partial area on page 8 is reserved and not recommended for customer use.
Page Address	0x7F	0~7	Within this range
Maximum Number of Erase Cycles	100000 次		Executable Operation Count

7.3 Frame Format


Each data frame is divided into several data words. Each data word is transmitted and received with 1 start bit, 8 data bits, and 1 stop bit, with the least significant bit first and the most significant bit last.

Items	Description	Remarks
CF	Control Field	Identifies different command types.
SF	Status Field	Provides information on the encoder's status
DF	Data Field	Encoder Position Data
ADF	Address Field	Accessible Encoder Address
EDF	E ² PROM Field	The content at the specified address
CRC	CRC Check	Polynomial: x8+1 (XOR all data except CRC)

In the data frame transmission, the following terms are used:



7.3.1 Position Data Reading

[Note]: The number of DF (Data Frames) varies depending on the CF (Configuration File).

7.3.2 Write E²PROM

*The request frame and response frame have the same content

7.3.3 Read E²PROM Idle 1 Request CF ADF CRC 0 CRC Control Address Field Field Field Idle 1 Data From Encoder CF ADF EDF CRC 0 E2PROM CRC Address Contro1 Field Field Field Field

* The return frame includes the content of the accessed address

7.4 Detailed Description

7.4.1 Control Field (CF)

CF consists of one data word, with categories and contents as shown in the table below:

Items	CF type	Remarks			
	ID0(0x02)	Absolute position access (CF+SF+ABS+CRC)			
Read data	ID1(0x8A)	Multi-turn information access (CF+SF+ABM+CRC)			
	ID2(0x92)	Encoder ID Information Read: (CF + SF + ID + CRC)			
	ID3(0x1A)	Read All Data: (CF + SF + ABS + ID + ABM + ALMC + CRC)			
Write E ² PROM	ID6(0x32)	You can write 8-bit user data to the specified address. After sending the instruction in the correct format, the encoder will respond with the data within 20 μ s. During this time, avoid communicating with the encoder.			
Read E²PROM	IDD(0xEA)	You can read 8-bit user data from the specified address. After sending the instruction in the correct format, the encoder will respond with the data within 20 μ s. During this time, avoid communicating with the encoder.			
	ID7(0xBA)	This reset command requires sending the instruction continuously 10 times with a time interval of no less than 62.5 μs between each. It will reset all fault status bits.			
Reset	ID8(0xC2)	This reset command requires sending the instruction continuously 10 times with a time interval of no less than 62.5 μs between each. It will reset the single-turn position to zero. Even after power cycling, the position data will remain at the reset position.			
	IDC(0x62)	This reset command requires sending the instruction continuously 10 times with a time interval of no less than 62.5μ s between each. It will reset the multi-turn data to zero (without affecting single-turn data) and will also reset all fault status bits.			

7.4.2 Status Field (SF)

SF is composed of one byte, with each bit defined as shown in the table below:

Bit number	Description	Remarks
Bit0	Rsvd	"O"
Bit1	Rsvd	"O"
Bit2	Rsvd	"O"
Bit3	Rsvd	"O"
Bit4	Counting Error	Equal to ALMC.Bit2
Bit5	Xor Multi Error	Equal to the logical OR of ALMC.Bit5, Bit6, and Bit7
Bit6	Rsvd	"O"
Bit7	Rsvd	"O"

7.4.3 Data Field (DF0~DF7)

Depending on the CF type, the DF contains a different number of bytes, as detailed in the table below:

CF Type	DF0	DF1	DF2	DF3	DF4	DF5	DF6	DF7
ID0(0x02)	ABS0	ABS1	ABS2					
ID1(0x8A)	ABM0	ABM1	ABM2					
ID2(0x92)	ENID							
ID3(0x1A)	ABS0	ABS1	ABS2	ENID	ABM0	ABM1	ABM2	ALMC
ID7(0xBA)	ABS0	ABS1	ABS2					
ID8(0xC2)	ABS0	ABS1	ABS2					
IDC(0x62)	ABS0	ABS1	ABS2					

[Note]:

- 1. ABS0~ABS2 represent the low, middle, and high positions of the encoder's absolute position, respectively. The high 7 bits of ABS2 are 0, and the remaining data forms a 17-bit position information (for a 23-bit encoder, the high 1 bit of ABS2 is 0, with the rest being valid bits).
- 2. ABM0~ABM2 represent the low, middle, and high positions of the encoder's multi-turn position, respectively. ABM2 is all 0s, and the remaining data forms a 16-bit multi-turn information.
- 3. ENID is the encoder ID, with a value of 0x11 (for 17-bit) or 0x17 (for 23-bit).
- 4. ALMC is the encoder fault flag, detailed in section 7.4.4.

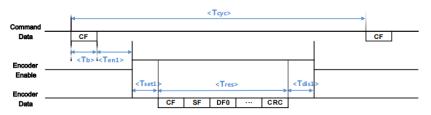
7.4.4 Error Description

ALMC faults are detailed in the table below:

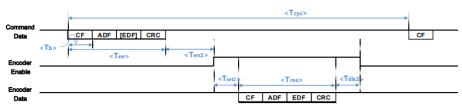
Bit	0	1	2	3	4	5	6	7
Name	Over-	"∩"	Counting	"∩"	"0"	Multi-turn	Battery	Battery
Name	speed	0	Error	U	0	error	error	alarm

Descriptions of fault flag bits are as follows:

Name	Function	Action
Over-speed	For 5V power mode, when speed exceeds 7200 RPM	Reset Power
Counting Error	Single-turn information calculation fault	Reset Power
Multi-turn error	Multi-turn data loss or multi-turn counting fault	Fault reset
Battery error	Battery voltage below 2.9V, set flag	Check battery power supply lines, replace battery
Battery alarm	Battery voltage below 3.1V, set flag	Fault will automatically clear after replacing with a battery of normal voltage



8. Timing Description


8.1 Timing Diagram

Reagle Power-on Timing Chart

Reagle CF Communication Timing Chart

Reagle EEPROM Communication Timing Chart

Characteristic	Symbol	Minimum	Default	Maximum	Unit	Note
Power-On time	Tpon		450	550	ms	
Command cycle period	Тсус	62.5			μs	
Data byte time	Tb		4		μs	
Encoder enable delay time	Ten1	1.5		3.5	μs	
	Ten2		4.5		μs	
Encoder EEPROM Command time	Tee		12		μs	Read: 3 bytes data
			16		μs	Write: 4 bytes data
Encoder response time	Tres		4*N		μs	N bytes data
Encoder data set-up delay time	Tset1	0.8		2	μs	
	Tset2	1		1.5	μs	
Encoder disable delay time	Tdis1	0.6		1.2	μs	
	Tdis2		1.3		μs	

8.2 Detailed Specifications

SROA Timing Characteristics

9. Configuration Instructions

Order code details can be found in the "Reagle Sensing Absolute Encoder Ordering Instructions."

For terminal cable specifications, refer to the "Reagle Sensing Absolute Encoder Terminal Cable Drawings."

Optional Configuration	Description		
resolution	17Bit/23Bit		
Wiring method	Terminal type		

Revision History

Date	Version	Modification Details or Changes				
Date	Number	Location	Content			
20210831	V1.0	/	New Version			
20220302	V2.0	Communication Specifications Timing Description	Refined communication protocol description Added timing section			
20220505	V2.1	Mounting Procedure	Changed dust plug to dust sticker			

COMMITTED TO SENSING TECHNOLOGY

PROMOTE INDUSTRIAL CIVILIZATION

www.reagles.cn 🖂 sales@reagles.cn 🕿 400-636-1110

O Fourth Floor, Block B, Building 9, Intelligence Industry